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ABSTRACT 
Data deduplication is a technique for eliminating duplicate copies of data, and has been widely used in cloud 

storage to reduce storage space and upload bandwidth. However, there is only one copy for each file stored in 

cloud even if such a file is owned by a huge number of users. As a result, deduplication system improves storage 

utilization while reducing reliability. Furthermore, the challenge of privacy for sensitive data also arises when 

they are outsourced by users to cloud. Aiming to address the above security challenges, this paper makes the first 

attempt to formalize the notion of distributed reliable deduplication system. We propose new distributed 

deduplication systems with higher reliability in which the data chunks are distributed across multiple cloud 

servers. The security requirements of data confidentiality and tag consistency are also achieved by introducing a 

deterministic secret sharing scheme in distributed storage systems, instead of using convergent encryption as in 

previous deduplication systems. Security analysis demonstrates that our deduplication systems are secure in terms 

of the definitions specified in the proposed security model. As a proof of concept, we implement the proposed 

systems and demonstrate that the incurred overhead is very limited in realistic environments. 

INTRODUCTION  
With the explosive growth of digital data, deduplication techniques are widely employed to backup data and 

minimize network and storage overhead by detecting and eliminating redundancy among data. Instead of keeping 

multiple data copies with the same content, deduplication eliminates redundant data by keeping only one physical 

copy and referring other redundant data to that copy. Deduplication has received much attention from both 

academia and industry because it can greatly improves storage utilization and save storage space, especially for 

the applications with high deduplication ratio such as archival storage systems. 

 

A number of deduplication systems have been proposed based on various deduplication strategies such as client-

side or server-side deduplications, file-level or block-level deduplications. A brief review is given in Section 6. 

Especially, with the advent of cloud storage, data deduplication techniques become more attractive and critical 

for the management of ever-increasing volumes of data in cloud storage services which motivates enterprises and 

organizations to outsource data storage to third-party cloud providers, as evidenced by many real-life case studies 

[1]. According to the analysis report of IDC, the volume of data in the world is expected to reach 40 trillion 

gigabytes in 2020 [2]. Today’s commercial cloud storage services, such as Dropbox, Google Drive and Mozy, 

have been applying deduplication to save the network bandwidth and the storage cost with client-side 

deduplication. 

 

There are two types of deduplication in terms of the size: (i) file-level deduplication, which discovers redundancies 

between different files and removes these redundancies to reduce capacity demands, and (ii) 

blockleveldeduplication, which discovers and removes redundancies between data blocks. The file can be divided 

into smaller fixed-size or variable-size blocks. Using fixedsize blocks simplifies the computations of block 

boundaries, while using variable-size blocks (e.g., based on Rabin fingerprinting [3]) provides better deduplication 

Efficiency. 

 

Though deduplication technique can save the storage space for the cloud storage service providers, it reduces the 

reliability of the system. Data reliability is actually a very critical issue in a deduplication storage system because 

there is only one copy for each file stored in the server shared by all the owners. If such a shared file/chunk was 

lost, a disproportionately large amount of data becomes inaccessible because of the unavailability of all the files 

that share this file/chunk. If the value of a chunk were measured in terms of the amount of file data that would be 

lost in case of losing a single chunk, then the amount of user data lost when a chunk in the storage system is 

corrupted grows with the number of the commonality of the chunk. Thus, how to guarantee high data reliability 

in deduplication system is a critical problem. Most of the previous deduplication systems have only been 

considered in a single-server setting. However, as lots of deduplication systems and cloud storage systems are 

intended by users and applications for higher reliability, especially in archival storage systems where data are 
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critical and should be preserved over long time periods. This requires that the deduplication storage systems 

provide reliability comparable to other high-available systems. 

 

Furthermore, the challenge for data privacy also arises as more and more sensitive data are being outsourced by 

users to cloud. Encryption mechanisms have usually been utilized to protect the confidentiality before outsourcing 

data into cloud. Most commercial storage service provider are reluctant to apply encryption over the data because 

it makes deduplication impossible. The reason is that the traditional encryption mechanisms, including public key 

encryption and symmetric key encryption, require different users to encrypt their data with their own keys. As a 

result, identical data copies of different users will lead to different ciphertexts. To solve the problems of 

confidentiality and deduplication, the notion of convergent encryption [4] has been proposed and widely adopted 

to enforce data confidentiality while realizing deduplication. However, these systems achieved confidentiality of 

outsourced data at the cost of decreased error resilience. Therefore, how to protect oth confidentiality and 

reliability while achieving deduplication in a cloud storage system is still a challenge. 

  

1.1 Our Contributions 

In this paper, we show how to design secure deduplication systems with higher reliability in cloud computing. We 

introduce the distributed cloud storage servers into deduplication systems to provide better fault tolerance. To 

further protect data confidentiality, the secret sharing technique is utilized, which is also compatible with the 

distributed storage systems. In more details, a file is first split and encoded into fragments by using the technique 

of secret sharing, instead of encryption mechanisms. These shares will be distributed across multiple independent 

storage servers. Furthermore, to support deduplication, a short cryptographic hash value of the content will also 

be computed and sent to each storage server as the fingerprint of the fragment stored at each server. Only the data 

owner who first uploads the data is required to compute and distribute such secret shares, while all following users 

who own the same data copy do not need to compute and store these shares any more. To recover data copies, 

users must access a minimum number of storage servers through authentication and obtain the secret shares to 

reconstruct the data. In other words, the secret shares of data will only be accessible by the authorized users who 

own the corresponding data copy. 

 

Another distinguishing feature of our proposal is that data integrity, including tag consistency, can be achieved. 

The traditional deduplication methods cannot be directly extended and applied in distributed and multi-server 

systems. To explain further, if the same short value is stored at a different cloud storage server to support a 

duplicate check by using a traditional deduplication method, it cannot resist the collusion attack launched by 

multiple servers. In other words, any of the servers can obtain shares of the data stored at the other servers with 

the same short value as proof of ownership. Furthermore, the tag consistency, which was first formalized by [5] 

to prevent the duplicate/ciphertext replacement attack, is considered in our protocol. In more details, it prevents a 

user from uploading a maliciously-generated ciphertext such that its tag is the same with another honestly-

generated ciphertext. To achieve this, a deterministic secret sharing method has been formalized and utilized. To 

our knowledge, no existing work on secure deduplication can properly address the reliability and tag consistency 

problem in distributed storage systems.  

 

This paper makes the following contributions. 

 Four new secure deduplication systems are proposed to provide efficient deduplication with high 

reliability for file-level and block-level deduplication, respectively. The secret splitting technique, 

instead of traditional encryption methods, is utilized to protect data confidentiality. Specifically, data are 

split into fragments by using secure secret sharing schemes and stored at different servers. Our proposed 

constructions support both file-level and block-level deduplications. 

 Security analysis demonstrates that the proposed deduplication systems are secure in terms of the 

definitions specified in the proposed security model. In more details, confidentiality, reliability and 

integrity can be achieved in our proposed system. Two kinds of collusion attacks are considered in our 

solutions. These are the collusion attack on the data and the collusion attack against servers. In particular, 

the data remains secure even if the adversary controls a limited number of storage servers. 

 We implement our deduplication systems using the Ramp secret sharing scheme that enables high 

reliability and confidentiality levels. Our evaluation results demonstrate that the new proposed 

constructions are efficient and the redundancies are optimized and comparable with the other storage 

system supporting the same level of reliability. 
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1.2 Organization 

This paper is organized as follows. In Section 2, we present the system model and security requirements of 

deduplication. Our constructions are presented in Section 3 and Section 4. The security analysis is given in Section 

5. The implementation and evaluation are shown in Sections 6, and related work is described in Section 7. Finally, 

we draw our conclusions in Section 8. 

 

PROBLEM FORMULATION 
2.1 System Model 

This section is devoted to the definitions of the system model and security threats. Two kinds entities will be 

involved in this deduplication system, including the user and the storage cloud service provider (S-CSP). Both 

client-side deduplication and server-side deduplication are supported in our system to save the bandwidth for data 

uploading and storage space for data storing. 

 User. The user is an entity that wants to outsource data storage to the S-CSP and access the data later. In 

a storage system supporting deduplication, the user only uploads unique data but does not upload any 

duplicate data to save the upload bandwidth. Furthermore, the fault tolerance is required by users in the 

system to provide higher reliability. 

 S-CSP. The S-CSP is an entity that provides the outsourcing data storage service for the users. In the 

deduplication system, when users own and store the same content, the S-CSP will only store a single 

copy of these files and retain only unique data. A deduplication technique, on the other hand, can reduce 

the storage cost at the server side and save the upload bandwidth at the user side. For fault tolerance and 

confidentiality of data storage, we consider a quorum of S-CSPs, each being an independent entity. The 

user data is distributed across multiple S-CSPs. 

 

We deploy our deduplication mechanism in both file and block levels. Specifically, to upload a file, a user first 

performs the file-level duplicate check. If the file is a duplicate, then all its blocks must be duplicates as well, 

otherwise, the user further performs the block level duplicate check and identifies the unique blocks to be 

uploaded. Each data copy (i.e., a file or a block) is associated with a tag for the duplicate check. All data copies 

and tags will be stored in the S-CSP. 

 

2.2 Threat Model and Security Goals 

Two types of attackers are considered in our threat model: (i) An outside attacker, who may obtain some 

knowledge of the data copy of interest via public channels. An outside attacker plays the role of a user that interacts 

with the S-CSP; (ii) An inside attacker, who may have some knowledge of partial data information such as the 

ciphertext. An insider attacker is assumed to be honest-but-curious and will follow our protocol, which could refer 

to the S-CSPs in our system. Their goal is to extract useful information from user data. The following security 

requirements, including confidentiality, integrity, and reliability are considered in our security model. 

 

Confidentiality. Here, we allow collusion among the SCSPs. However, we require that the number of colluded S-

CSPs is not more than a predefined threshold. To this end, we aim to achieve data confidentiality against 

collusion attacks. We require that the data distributed and stored among the S-CSPs remains secure when they are 

unpredictable (i.e., have high min-entropy), even if the adversary controls a predefined number of S-CSPs. The 

goal of the adversary is to retrieve and recover the files that do not belong to them. This requirement has recently 

been formalized in [6] and called the privacy against chosen distribution attack. This also implies that the data is 

secure against the adversary who does not own the data. 

 

Integrity. Two kinds of integrity, including tag consistency and message authentication, are involved in the 

security model. Tag consistency check is run by the cloud storage server during the file uploading phase, which 

is used to prevent the duplicate/ciphertext replacement attack. If any adversary uploads a maliciously-generated 

ciphertext such that its tag is the same with another honestly-generated ciphertext, the cloud storage server can 

detect this dishonest behavior. Thus, the users do not need to worry about that their data are replaced and unable 

to be decrypted. Message authentication check is run by the users, which is used to detect if the downloaded and 

decrypted data are complete and uncorrupted or not. This security requirement is introduced to prevent the insider 

attack from the cloud storage service providers.  

 

Reliability. The security requirement of reliability in deduplication means that the storage system can provide 

fault tolerance by using the means of redundancy. In more details, in our system, it can be tolerated even if a 



 [Sandhya., 3(4): April, 2016]                                                                                      ISSN 2349-4506 
  Impact Factor: 2.265 

Global Journal of Engineering Science and Research Management 
 

http: //  www.gjesrm.com        © Global Journal of Engineering Science and Research Management 

 [81] 

certain number of nodes fail. The system is required to detect and repair corrupted data and provide correct output 

for the users. 

 

THE DISTRIBUTED DEDUPLICATION SYSTEMS 
The distributed deduplication systems’ proposed aim is to reliably store data in the cloud while achieving 

confidentiality and integrity. Its main goal is to enable deduplication and distributed storage of the data across 

multiple storage servers. Instead of encrypting the data to keep the confidentiality of the data, our new 

constructions utilize the secret splitting technique to split data into shards. These shards will then be distributed 

across multiple storage servers. 

 

3.1 Building Blocks 

Secret Sharing Scheme. There are two algorithms in a secret sharing scheme, which are Share and Recover. The 

secret is divided and shared by using Share. With enough shares, the secret can be extracted and recovered with 

the algorithm of Recover. In our implementation, we will use the Ramp secret sharing scheme (RSSS, to secretly 

split a secret into shards. Specifically, the (n, k, r)-RSSS (where n > k > r ≥ 0) generates n shares from a secret so 

that (i) the secret can be recovered from any k or more shares, and (ii) no information about the secret can be 

deduced from any r or less shares. Two algorithms, Share and Recover, are defined in the (n, k, r)-RSSS. 

 Share divides a secret S into (k −r) pieces of equal size, generates r random pieces of the same size, and 

encodes the k pieces using a non-systematic k-of-n erasure code into n shares of the same size; 

 Recover takes any k out of n shares as inputs and then outputs the original secret S. It is known that when 

r = 0, the (n, k, 0)-RSSS becomes the (n, k) Rabin’s Information Dispersal Algorithm (IDA) [9]. When r 

= k−1, the (n, k, k−1)-RSSS becomes the (n,k) Shamir’s Secret Sharing Scheme (SSSS) [10]. 

 

Tag Generation Algorithm. In our constructions below, two kinds of tag generation algorithms are defined, that 

is, TagGen and TagGen’. TagGen is the tag generation algorithm that maps the original data copy F and outputs 

a tag T(F). This tag will be generated by the user and applied to perform the duplicate check with the server. 

Another tag generation algorithm TagGen’ takes as input a file F and an index j and outputs a tag. This tag, 

generated by users, is used for the proof of ownership for F. 

 

Message authentication code. A message authentication code (MAC) is a short piece of information used to 

authenticate a message and to provide integrity and authenticity assurances on the message. In our construction, 

the message authentication code is applied to achieve the integrity of the outsourced stored files. It can be easily 

constructed with a keyed (cryptographic) hash function, which takes input as a secret key and an arbitrary-length 

file that needs to be authenticated, and outputs a MAC. Only users with the same key generating the MAC can 

verify the correctness of the MAC value and detect whether the file has been changed or not. 

 

3.2 The File-level Distributed Deduplication System 

To support efficient duplicate check, tags for each file will be computed and are sent to S-CSPs. To prevent a 

collusion attack launched by the S-CSPs, the tags stored at different storage servers are computationally 

independent and different. We now elaborate on the details of the construction as follows. 

 

System setup. In our construction, the number of storage servers S-CSPs is assumed to be n with identities denoted 

by id1, id2, · · · , idn, respectively. Define the security parameter as 1_ and initialize a secret sharing scheme SS 

= (Share, Recover), and a tag generation algorithm TagGen. The file storage system for the storage server is set 

to be ⊥. 

 

File Upload. To upload a file F, the user interacts with S-CSPs to perform the deduplication. More precisely, the 

user firstly computes and sends the file tag ϕF = TagGen(F) to S-CSPs for the file duplicate check. 

 

If a duplicate is found, the user computes and sends ϕF;idj = TagGen′(F, idj) to the j-th server with identity idj 

via the secure channel for 1 ≤ j ≤ n (which could be implemented by a cryptographic hash function Hj(F) related 

with index j). The reason for introducing an index j is to prevent the server from getting the shares of other S-

CSPs for the same file or block, which will be explained in detail in the security analysis. If ϕF;idj matches the 

metadata stored with ϕF , the user will be provided a pointer for the shard stored at server idj . 

 Otherwise, if no duplicate is found, the user will proceed as follows. He runs the secret sharing algorithm 
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SS over F to get {cj} = Share(F), where cj is the j-th shard of F. He also computes ϕF;idj = TagGen′(F, 

idj), which serves as the tag for the jth S-CSP. Finally, the user uploads the set of values {ϕF , cj , ϕF;idj 

} to the S-CSP with identity idj via a secure channel. The S-CSP stores these values and returns a pointer 

back to the user for local storage. 

 

File Download. To download a file F, the user first downloads the secret shares {cj} of the file from k out of n 

storage servers. Specifically, the user sends the pointer of F to k out of n S-CSPs. After gathering enough shares, 

the user reconstructs file F by using the algorithm of Recover({cj}). This approach provides fault tolerance and 

allows the user to remain accessible even if any limited subsets of storage servers fail. 

 

3.3 The Block-level Distributed Deduplication System 

In this section, we show how to achieve the fine-grained block-level distributed deduplication. In a block-level 

deduplication system, the user also needs to firstly perform the file-level deduplication before uploading his file. 

If no duplicate is found, the user divides this file into blocks and performs block-level deduplication. The system 

setup is the same as the file-level deduplication system, except the block size parameter will be defined 

additionally. Next, we give the details of the algorithms of File Upload and File Download. 

 

File Upload. To upload a file F, the user first performs the file-level deduplication by sending ϕF to the storage 

servers. If a duplicate is found, the user will perform the file-level deduplication, such as that in Section 3.2. 

Otherwise, if no duplicate is found, the user performs the block-level deduplication as follows. He firstly divides 

F into a set of fragments {Bi} (where i = 1, 2, · · · ). For each fragment Bi, the user will perform a block-level 

duplicate check by computing ϕBi = TagGen(Bi), where the data processing and duplicate check of block-level 

deduplication is the same as that of file-level deduplication if the file F is replaced with block Bi. Upon receiving 

block tags {ϕBi }, the server with identity idj computes a block signal vector σBi for each i. 

 If σBi=1, the user further computes and sends ϕBi;j = TagGen′(Bi, j) to the S-CSP with identity idj . If it 

also matches the corresponding tag stored, S-CSP returns a block pointer of Bi to the user. Then, the user 

keeps the block pointer of Bi and does not need to upload Bi.  

  ii) If σBi=0, the user runs the secret sharing algorithm SS over Bi and gets {cij} = Share(Bi), where cij 

is the j-th secret share of Bi. The user also computes ϕBi;j for 1 ≤ j ≤ n and uploads the set of values {ϕF 

, ϕF;idj , cij , ϕBi;j} to the server idj via a secure channel. The S-CSP returns the corresponding pointers 

back to the user. 

 

File Download. To download a file F = {Bi}, the user first downloads the secret shares {cij} of all the blocks Bi in 

F from k out of n S-CSPs. Specifically, the user sends all the pointers for Bi to k out of n servers. After gathering 

all the shares, the user reconstructs all the fragments Bi using the algorithm of Recover({·}) and gets the file F = 

{Bi}. 

 

FUTURE ENHANCEMENT 
4.1 Distributed Deduplication System with Tag Consistency 

In this section, we consider how to prevent a duplicate faking or maliciously-generated ciphertext replacement 

attack. A security notion of tag consistency has been formalized for this kind of attack [6]. In a deduplication 

storage system with tag consistency, it requires that no adversary is able to obtain the same tag from a pair of 

different messages with a non-negligible probability. This provides security guarantees against the duplicate 

faking attacks in which a message can be undetectably replaced by a fake one. In the previous related work on 

reliable deduplication over encrypted data, the tag consistency cannot be achieved as the tag is computed by the 

data owner from underlying data files, which cannot be verified by the storage server. As a result, if the data owner 

replaces and uploads another file that is different from the file corresponding to the tag, the following users who 

perform the duplicate check cannot detect this duplicate faking attack and extract the exact files they want. To 

solve this security weakness, [6] suggested to compute the tag directly from the ciphertext by using a hash 

function. This solution obviously prevents the ciphertext replacement attack because the cloud storage server is 

able to compute the tag by itself. However, such a method is unsuitable for the distributed storage system to realize 

the tag consistency. The challenge is that traditional secret sharing schemes are not deterministic. As a result, the 

duplicate check for each share stored in different storage servers will not be the same for all users. In [11], though 

they mentioned the method of deterministic secret sharing scheme in the implementation, the tag was still 

computed from the whole file or ciphertext, which means the schemes in [11] cannot achieve the security against 

duplicate faking and replacement attacks.  
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4.1.1 Deterministic Secret Sharing Schemes 

We formalize and present two new techniques for the construction of the deterministic secret sharing schemes. 

For simplicity, we present an example based on traditional Shamir’s Secret Sharing scheme. The description of 

(k, n)-threshold in Shamir’s secret sharing scheme is as follows. In the algorithm of Share, given a secret α ∈ Zp 

to be shared among n users for a prime p, choose at random a (k − 1)-degree polynomial function f(x) = a0 + a1x 

+ a2x2 + · · · + ak−1xk−1 ∈ Zp[X] such that α = f(0). The value of f(i) mod p for 1 ≤ i ≤ n is computed as the i-th 

share. In the algorithm of Recover, Lagrange interpolation is used to compute α from any valid k shares. The 

deterministic version of Shamir’s secret sharing scheme is similar to the original one, except all the random 

coefficients {ai} are replaced with deterministic values. We describe two methods to realize the constructions of 

deterministic secret sharing schemes below. 

 

The First Method 

Share. To share a secret α ∈ Zp, it chooses at random a (k − 1)-degree polynomial function f(x) = a0 + a1x + a2x2 

+ · · · + ak−1xk−1 ∈ Zp[X] such that α = f(0), ai = H(α∥i) and p is a prime, where H(·) is a hash function. The 

value of f(i) mod p for 1 ≤ i ≤ n is computed as the i-th share and distributed to the corresponding owner. Recover. 

The description of algorithm Recover is the same with the traditional Shamir’s secret sharing scheme by using 

Lagrange interpolation. The secret α can be recovered from any valid k shares. For files or blocks unknown to the 

adversary, these coefficients are also confidential if they are unpredictable. To show its security, these values can 

be also viewed as random coefficients in the random oracle model. Obviously, these methods can be also applied 

to the RSSS to realize deterministic sharing. 

 

The Second Method 

Obviously, the first method of deterministic secret sharing cannot prevent brute-force attack if the file is 

predictable. Thus, we show how to construct another deterministic secret sharing construction method to prevent 

the brute-force attack. Another entity, called key server, is introduced in this method, who is assumed to be honest 

and will not collude with the cloud storage server and other outside attackers. System Setup. Apart from the 

parameters for the first deterministic secret sharing scheme, the key server chooses a key pair (pk, sk) which can 

be initialized as RSA cryptosystem. Share. To share a secret α, the user first computes H(α∥i) for 1 ≤ i ≤ k − 1. 

Then, he interacts with the key server in an oblivious way such that the key server generates a blind signature on 

each H(α∥i) with the secret key sk without knowing H(α∥i). For simplicity, we denote the signature as σi = 

φ(H(α∥i), sk), where φ is a signing algorithm. Finally, the owner of the secret chooses at random a (k−1)-degree 

polynomial function f(x) = a0 + a1x + a2x2 + · · · + ak−1xk−1 ∈ Zp[X] such that α = f(0) and ai = σi. The value 

of f(i) mod p for 1 ≤ i ≤ n is computed as the i-th share and distributed to the corresponding owner. Recover. It is 

the same with the traditional Shamir’s secret sharing scheme. In the second construction, the secret key sk is 

applied to compute the value of σi. Thus, for the cloud storage server and other outside attackers, they cannot get 

any useful information from the short value even if the secret is predictable [5]. Actually, the signature can be 

viewed as a pseudorandom function for α. 

 

4.1.2 The Construction of Distributed Deduplication 

System with Tag Consistency We give a generic construction that achieves tag consistency below. 

 

System setup. This algorithm is similar to the above construction except a deterministic secret sharing scheme SS 

= (Share, Recover) is given. 

 

File Upload. To upload a file F, the user first performs the file-level deduplication. Different from the above 

constructions, the user needs to compute the secret shares {Fj}1≤j≤n of the file by using the Share algorithm. 

Then, ϕFj = TagGen(Fj) is computed and sent to the j-th S-CSP for each j. It is the same as above if there is a 

duplicate. Otherwise, the user performs the block-level deduplication as follows. Note that each server idj also 

needs to keep ϕFj with the following information of the blocks. The file F is firstly divided into a set of fragments 

{Bi} (where i = 1, 2, · · · ). For each block, the duplicate check operation is the same as the file-level check except 

file F is replaced with block Bi. Assume that the secret shares are {Bij} for 1 ≤ j ≤ n and corresponding tags are 

ϕBij for block Bi, where 1 ≤ j ≤ n. The tag ϕBij is sent to the the server with identity idj . A block pointer of Bi 

from this server is returned to the user if there is a match. Otherwise, the user uploads the Bij to the server idj via 

a secure channel and a pointer for this block will also be returned back to the user. The procedure of the file 

download is the same as the previous block-level deduplication scheme in Section 3.3. In this construction, the 

security relies on the assumption that there is a secure deterministic secret sharing scheme.  
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4.2 Enhanced Deduplication System with Proof of Ownership 

Recently, Halevi [12] pointed out the weakness of the security in traditional deduplication systems with only a 

short hashing value. Halevi showed a number of attacks that can lead to data leakage in a storage system supporting 

client-side deduplication. To overcome this security issue, they also presented the concept of Proof of Ownership 

(PoW) to prevent these attacks. PoW [12] enables users to prove their ownership of data copies to the storage 

server. Specifically, PoW is implemented as an interactive algorithm (denoted by PoW) run by a prover (i.e., user) 

and a verifier (i.e., storage server). The verifier derives a short tag value ϕ(F) from a data copy F. To prove the 

ownership of the data copy F, the prover needs toi) compute and send ϕ′ to the verifier, and ii) present proof to 

the storage server that he owns F in an interactive way with respect to ϕ′. The PoW is successful if ϕ′ = ϕ(F) and 

the proof is correct. The formal security definition for PoW roughly follows the threat model in a content 

distribution network, where an attacker does not know the entire file, but has accomplices who have the file. The 

accomplices follow the “bounded retrieval model” so they can help the attacker obtain the file, subject to the 

constraint they must send fewer bits than the initial min-entropy of the file to the attacker [12]. Thus, we also 

introduce Proof of Ownership techniques in our construction to prevent the deduplication systems from these 

attacks. Furthermore, we also consider how to achieve the integrity of the data stored in each S-CSP by using the 

message authentication code. We now show how to integrate PoW and the message authentication code in our 

deduplication systems. The system setup is similar to the scheme in Section 3.3 except two PoW notions are 

additionally involved. We denote them by POWF and POWB, where POWF is PoW for file-level deduplication 

and POWB is PoW for block-level deduplication, respectively. 

 

File Upload. To upload a file F, the user performs a file-level deduplication with the S-CSPs, as in Section 3.3. If 

a file duplicate is found, the user will run the PoW protocol POWF with each S-CSP to prove the file ownership. 

More precisely, for the j-th server with identity idj , the user first computes ϕF;idj = TagGen′(F, idj) and runs the 

PoW proof algorithm with respect to ϕF;idj . If the proof is passed, the user will be provided a pointer for the 

piece of file stored at j-th S-CSP. Otherwise, if no duplicate is found, the user will proceed as follows. He first 

divides F into a set of fragments {Bi} (where i = 1, 2, · · · ). For each fragment Bi, the user will perform a block-

level duplicate check, such as the scheme in Section 3.3.  

 If there is a duplicate in S-CSP, the user runs PoWB on input ϕBi;j = TagGen′(Bi, idj) with the server to 

prove that he owns the block Bi. If it is passed, the server simply returns a block pointer of Bi to the user. 

The user then keeps the block pointer of Bi and does not need to upload Bi. 

 Otherwise, the user runs the secret sharing algorithm SS over Bi and gets {cij} = Share(Bi), where cij is 

the j-th secret share of Bi. The values of (cij , ϕBi;j) will be uploaded and stored by the j-th S-CSP. 

Finally, the user also computes the messageauthentication code of F as macF = H(kF , F), where the keys 

are computed as kF = H0(F) with a cryptographic hash function H0(·). Then, the user runs the secret 

sharing algorithm SS over macF as {mfj} = Share(macF ), where mfj is the j-th secret share of macF . 

The user uploads the set of values{ϕF , ϕF;idj ,mfj} to the S-CSP with identity idj via a secure channel. 

The server stores these values and returns the corresponding pointers back to the user for local storage.  

 

File Download. To download a file F, the user first downloads the secret shares {cij ,mfj} of the file from k out of 

n storage servers. Specifically, the user sends all the pointers for F to k out of n servers. After gathering all the 

shares, the user reconstructs file F, macF by using the algorithm of Recover({·}). Then, he verifies the correctness 

of these tags to check the integrity of the file stored in S-CSPs. 

 

SECURITY ANALYSIS 
In this section, we will only give the security analysis for the distributed deduplication system in Section 4. The 

security analysis for the other constructions is similar and thus omitted here. Some basic cryptographic tools have 

been applied into our construction to achieve secure deduplication. To show the security of this protocol, we 

assume that the underlying building blocks are secure, including the secret sharing scheme and the PoW scheme. 

Thus, the security will be analyzed based on the above security assumptions. In our constructions, S-CSPs are 

assumed to follow the protocols. If the data file has been successfully uploaded and stored at servers, then the user 

who owns the file can convince the servers based on the correctness of the PoW. Furthermore, the data is 

distributedly stored at servers with the secret sharing method. Based on the completeness of the underlying secret 

sharing scheme, the file will be recovered by the user with enough correct shares. The integrity can be also 

obtained because the utilization of secure message authentication code. Next, we consider the confidentiality 

against two types of adversaries. The first type of adversary is defined as dishonest users who aims to retrieve 

files stored at SCSPs they do not own. The second type of adversary is defined as a group of S-CSPs and users. 
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Their goal is to get the useful information of file content they do not own individually by launching the collusion 

attack. The attacks launched by these two types of adversaries are denoted by Type-I attack and Type-II attack, 

respectively. Because the RSSS is used in our construction, the different level of confidentiality is achieved in 

terms of the parameter r given in the RSSS scheme, hich increases with the number of r. Thus, in the following 

security analysis, we will not explain this furthermore. 

 

Confidentiality against a Type-I Attack 

This type of adversary tries to convince the S-CSPs with some auxiliary information to get the content of the file 

stored at S-CSPs. To get one piece of share stored in a S-CSP, the user needs to perform a correct PoW protocol 

for the corresponding share stored at the S-CSP. In this way, if the adversary wants to get the k-th piece of a share 

he does not own, he has to convince the k-th SCSP by correctly running a PoW protocol. However, the user cannot 

get the auxiliary value used to perform PoW, if he does not own the file. Thus, based on the security of PoW, the 

security against a Type-I attack is easily derived. 

 

Confidentiality against a Type-II Attack 

As shown in the construction, the data is processed before being outsourced to cloud servers. A secure secret 

sharing scheme has been applied to split each file into pieces, where each piece is distributedly stored in a SCSP. 

Because the underlying RSSS secret sharing scheme is semantically secure, the data can not be recovered from 

pieces of shares that are less than a predefined threshold number. This means the confidentiality of the data stored 

at the S-CSPs is guaranteed even if some S-CSPs collude. Note that in the RSSS secret sharing scheme, no 

information will be leaked even if any r of n shares collude. Thus, the data in our scheme remains secure even if 

any r S-CSPs collude. We also need to consider the security against a colluding attack for PoW protocol because 

the adversary may also get the data if he successfully convinces the S-CSPs with correct proof in PoW. There are 

two kinds of PoW utilized in our constructions. These are blocklevel and file-level proof of ownership. Recently, 

the formal security definition of PoW was formally given in [12]. However, there was one tradeoff security 

definition. This definition relaxes the restriction that the proof fails unless the accomplices of the adversary send 

more than a threshold or more bits to the adversary, regardless of the file entropy. Next, we will present a security 

analysis of the proposed PoW in distributed deduplication systems. Assume there are t S-CSPs that would collude 

and try to extract a user’s sensitive file F, where t < k. We will only present the analysis for file because the 

security analysis for block is the same. From this assumption, we can model it by providing an adversary with a 

set of tags {ϕF;idi1 , · · · , ϕF;idit }, where idi1, · · · , idit are the identities of the servers. Furthermore, the 

interactive values in the proof algorithm between the users and servers with respect to these tags are available to 

the adversary. Then, the proof of PoW cannot be passed to convince a server with respect to another different tag 

ϕF;id_ , where id∗ ̸∈ {idi1, · · · , idik}. Such a PoW scheme with a secure proof algorithm can be easily constructed 

based on previously known PoW methods. For example, the tag generation TagGen(F, idi) algorithm could be 

computed from the independent Merkle-hash tree with the different cryptographic hash function Hi(·) [12]. Using 

the proof algorithm in the PoW scheme with respect to ϕF;idi , we can then easily obtain a secure proof of 

ownership scheme with the above security requirement. Finally, based on such a secure PoW scheme and secure 

secret sharing scheme, we can get the following security result for our distributed deduplication system from the 

above analysis. 

 

Theorem 1: The proposed distributed deduplication system achieves privacy against the chosen distribution attack 

under the assumptions that the secret sharing scheme and PoW scheme are secure. The security analysis of 

reliability is simple because of the utilization of RSSS, which is determined by parameters of n and k. Based on 

the RSSS, the data can be recovered from any k shares. More specifically, this reliability level depends on n − k. 

 

EXPERIMENT 
We describe the implementation details of the proposed distributed deduplication systems in this section. The 

main tool for our new deduplication systems is the Ramp secret sharing scheme (RSSS) [7], [8]. The shares of a 

file are shared across multiple cloud storage servers in a secure way. The efficiency of the proposed distributed 

systems are mainly determined by the following three parameters of n, k, and r in RSSS. In this experiment, we 

choose 4KB as the default data block size, which has been widely adopted for block-level deduplication systems. 

We choose the hash function SHA-256 with an output size of 32 bytes. We implement the RSSS based on the 

Jerasure Version 1.2 [13]. We choose the erasure code in the (n, k, r)-RSSS whose generator matrix is a Cauchy 

matrix [14] for the data encoding and decoding. The storage blowup is determined by the parameters n, k, r. In 

more details, this value is n k−r in theory. All our experiments were performed on an Intelr Xeonr E5530 
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(2.40GHz) server with Linux 3.2.0-23- generic OS. In the deduplication systems, the (n, k, r)- RSSS has been 

used. For practice consideration, we test four cases:  

• case 1: r = 1, k = 2, and 3 ≤ n ≤ 8 (Figure 3(a)); 

• case 2: r = 1, k = 3 and 4 ≤ n ≤ 8 (Figure 3(b)); 

• case 3: r = 2, k = 3, and 4 ≤ n ≤ 8 (Figure 3(c)); 

• case 4: r = 2, k = 4, and 5 ≤ n ≤ 8 (Figure 3(d)). 

As shown in Figure 1, the encoding and decoding times of our deduplication systems for each block (per 4KB 

data block) are always in the order of microseconds, and hence are negligible compared to the data transfer 

performance in the Internet setting. We can also observe that the encoding time is higher than the decoding time. 

The reason for this result is that the encoding operation always involves all n shares, while the decoding operation 

only involves a subset of k < n shares. The performance of several basic modules in our constructions is tested in 

our experiment. First, The average time for generating a hash function with 32-byte output from a 4KB data block 

is 25.196 usec. The average time is 30 ms for generating a hash function with the same output length from a 4MB 

file, which only needs to be computed by the user for each file. Next, we focus on the evaluation with respect to 

some critical factors in the (n, k, r)-RSSS. First, we evaluate the efficiency between the computation and the 

number of SCSPs. The results are given in Figure 2, which shows the encoding/decoding times versus the number 

of S-CSPs n. In this experiment, r is set to be 2 and the reliability level n−k = 2 are also fixed. From Figure 2, the 

encoding time increases with the number of n since more shares are involved in the encoding algorithm. We also 

test the relation between the computational time and the parameter r. More specifically, in Figure 3, it shows the 

encoding/decoding times versus the confidentiality level r. To realize this test, the number of S-CSPs n = 6 and 

the reliability level n − k = 2 are fixed. From the figure, it can be easily found that the encoding/decoding time 

increases with r. Actually, this observation could also be derived from the theoretical result. If we recall that a 

secret is divided into k−r equalsize pieces in the Share function of the RSSS. As a result, the size of each piece 

will increase with the size of r, which increases the encoding/decoding computational overhead. From this 

experiment, we can also conclude it will require much higher computational overhead in order to achieve higher 

confidentiality. In Figure 4, the relation of the factor of n − k and the computational time is given, where the 

number of S-CSPs and the confidentiality level are fixed as n = 6 and r = 2. From the figure, we can see that with 

the increase of n−k, the encoding/decoding time decreases. The reason for this result is based on the RSSS, where 

fewer pieces (i.e., k) will be required with the increase of n − k. 

 

RELATED WORK 
Reliable Deduplication systems Data deduplication techniques are very interesting techniques that are widely 

employed for data backup in enterprise environments to minimize network and storage overhead by detecting and 

eliminating redundancy among data blocks. There are many deduplication schemes proposed by the research 

community. The reliability in deduplication has also been addressed by [15], [11], [16]. However, they only 

focused on traditional files without encryption, without considering the reliable deduplication over ciphertext. Li 

et al. [11] showed how to achieve reliable key management in deduplication. However, they did not mention about 

the application of reliable deduplication for encrypted files. Later, in [16], they showed how to extend the method 

in [11] for the construction of reliable deduplication for user files. However, all of these works have not considered 

and achieved the tag consistency and integrity in the construction. 

 

 
Fig. 1. The Encoding and Decoding time for different RSSS parameters. 
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Convergent encryption. Convergent encryption [4] ensures data privacy in deduplication. Bellare et al. [6] 

formalized this primitive as message-locked encryption, and explored its application in spaceefficient secure 

outsourced storage. There are also several implementations of convergent implementations of different convergent 

encryption variants for secure deduplication (e.g., [17], [18], [19], [20]). It is known that some commercial cloud 

storage providers, such as Bitcasa, also deploy convergent encryption [6]. Liet al. [11] addressed the key-

management issue in block-level deduplication by distributing these key across multiple servers after encrypting 

the files. Bellare et al. [5] showed how to protect data confidentiality by transforming the predicatable message 

into a 

 

Unpredicatable message. In their system, another third party called the key server was introduced to generate the 

file tag for the duplicate check. Stanek et al. [21] presented a novel encryption scheme that provided differential 

security for popular and unpopular data. For popular data that are not particularly sensitive, the traditional 

conventional encryption is performed. Another two-layered encryption scheme with stronger security while 

supporting deduplication was proposed for unpopular data. In this way, they achieved better tradeoff between the 

efficiency and security of the outsourced data. 

 

Proof of ownership. Harnik et al. [22] presented a number of attacks that can lead to data leakage in a cloud storage 

System supporting client-side deduplication. To prevent these attacks, Halevi et al. [12] proposed the notion of 

“proofs of ownership” (PoW) for deduplication systems, so that a client can efficiently prove to the cloud storage 

server that he/she owns a file without uploading the file itself. Several PoW constructions based on the Merkle 

Hash Tree are proposed [12] to enable client-side deduplication, which includes the bounded leakage setting. 

Pietro and Sorniotti [23] proposed another efficient PoW scheme by choosing the projection of a file onto some 

randomly selected bit-positions as the file proof. Note that all of the above schemes do not consider data privacy. 

Recently, Xu et al. [24] presented a PoW scheme that allows client-side deduplication in a bounded leakage setting 

with security in the random oracle model. Ng et al. [25] extended PoW for encrypted file, but they did not address 

how to minimize the key management overhead. PoR/PDP. Ateniese et al. [26] introduced the concept of proof 

of data possession (PDP). This notion was introduced to allow a cloud client to verify the integrity of its data 

outsourced to the cloud in a very efficient way. Juels et al. [27] proposed the concept of proof of retrievability 

(PoR). Compared with PDP, PoR allows the cloud client to recover his outsourced data through the interactive 

proof with the server. This scheme was later improved by Shacham and Waters [28]. The main difference between 

the two notions is that PoR uses Error Correction/Erasure Codes to tolerate the damage to portions of the 

outsourced data. 

 

CONCLUSIONS 
We proposed the distributed deduplication systems to improve the reliability of data while achieving the 

confidentiality of the users’ outsourced data without an encryption mechanism. Four constructions were proposed 

to support file-level and fine-grained block-level data deduplication. The security of tag consistency and integrity 

were achieved. We implemented our deduplication systems using the Ramp secret sharing scheme and 

demonstrated that it incurs small encoding/decoding overhead compared to the network transmission overhead in 

regular upload/download operations. 
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