
 [Sandhya., 3(4): April, 2016] ISSN 2349-4506
 Impact Factor: 2.265

Global Journal of Engineering Science and Research Management

http: // www.gjesrm.com © Global Journal of Engineering Science and Research Management

 [78]

REDUCTION IN STORAGE SPACE BY ELIMINATION OF REDUNDANT DATA
Sandhya .N .C*, Shashirekha .H
* Dept. of Computer science &Engg, VTU PG Centre, Mysore, Karnataka, INDIA.

Assistent Professor, Dept. of Computer science &Engg, VTU PG Centre, Mysore, Karnataka, INDIA.

KEYWORDS: Deduplication, distributed storage system, reliability, secret sharing.

ABSTRACT
Data deduplication is a technique for eliminating duplicate copies of data, and has been widely used in cloud

storage to reduce storage space and upload bandwidth. However, there is only one copy for each file stored in

cloud even if such a file is owned by a huge number of users. As a result, deduplication system improves storage

utilization while reducing reliability. Furthermore, the challenge of privacy for sensitive data also arises when

they are outsourced by users to cloud. Aiming to address the above security challenges, this paper makes the first

attempt to formalize the notion of distributed reliable deduplication system. We propose new distributed

deduplication systems with higher reliability in which the data chunks are distributed across multiple cloud

servers. The security requirements of data confidentiality and tag consistency are also achieved by introducing a

deterministic secret sharing scheme in distributed storage systems, instead of using convergent encryption as in

previous deduplication systems. Security analysis demonstrates that our deduplication systems are secure in terms

of the definitions specified in the proposed security model. As a proof of concept, we implement the proposed

systems and demonstrate that the incurred overhead is very limited in realistic environments.

INTRODUCTION
With the explosive growth of digital data, deduplication techniques are widely employed to backup data and

minimize network and storage overhead by detecting and eliminating redundancy among data. Instead of keeping

multiple data copies with the same content, deduplication eliminates redundant data by keeping only one physical

copy and referring other redundant data to that copy. Deduplication has received much attention from both

academia and industry because it can greatly improves storage utilization and save storage space, especially for

the applications with high deduplication ratio such as archival storage systems.

A number of deduplication systems have been proposed based on various deduplication strategies such as client-

side or server-side deduplications, file-level or block-level deduplications. A brief review is given in Section 6.

Especially, with the advent of cloud storage, data deduplication techniques become more attractive and critical

for the management of ever-increasing volumes of data in cloud storage services which motivates enterprises and

organizations to outsource data storage to third-party cloud providers, as evidenced by many real-life case studies

[1]. According to the analysis report of IDC, the volume of data in the world is expected to reach 40 trillion

gigabytes in 2020 [2]. Today’s commercial cloud storage services, such as Dropbox, Google Drive and Mozy,

have been applying deduplication to save the network bandwidth and the storage cost with client-side

deduplication.

There are two types of deduplication in terms of the size: (i) file-level deduplication, which discovers redundancies

between different files and removes these redundancies to reduce capacity demands, and (ii)

blockleveldeduplication, which discovers and removes redundancies between data blocks. The file can be divided

into smaller fixed-size or variable-size blocks. Using fixedsize blocks simplifies the computations of block

boundaries, while using variable-size blocks (e.g., based on Rabin fingerprinting [3]) provides better deduplication

Efficiency.

Though deduplication technique can save the storage space for the cloud storage service providers, it reduces the

reliability of the system. Data reliability is actually a very critical issue in a deduplication storage system because

there is only one copy for each file stored in the server shared by all the owners. If such a shared file/chunk was

lost, a disproportionately large amount of data becomes inaccessible because of the unavailability of all the files

that share this file/chunk. If the value of a chunk were measured in terms of the amount of file data that would be

lost in case of losing a single chunk, then the amount of user data lost when a chunk in the storage system is

corrupted grows with the number of the commonality of the chunk. Thus, how to guarantee high data reliability

in deduplication system is a critical problem. Most of the previous deduplication systems have only been

considered in a single-server setting. However, as lots of deduplication systems and cloud storage systems are

intended by users and applications for higher reliability, especially in archival storage systems where data are

 [Sandhya., 3(4): April, 2016] ISSN 2349-4506
 Impact Factor: 2.265

Global Journal of Engineering Science and Research Management

http: // www.gjesrm.com © Global Journal of Engineering Science and Research Management

 [79]

critical and should be preserved over long time periods. This requires that the deduplication storage systems

provide reliability comparable to other high-available systems.

Furthermore, the challenge for data privacy also arises as more and more sensitive data are being outsourced by

users to cloud. Encryption mechanisms have usually been utilized to protect the confidentiality before outsourcing

data into cloud. Most commercial storage service provider are reluctant to apply encryption over the data because

it makes deduplication impossible. The reason is that the traditional encryption mechanisms, including public key

encryption and symmetric key encryption, require different users to encrypt their data with their own keys. As a

result, identical data copies of different users will lead to different ciphertexts. To solve the problems of

confidentiality and deduplication, the notion of convergent encryption [4] has been proposed and widely adopted

to enforce data confidentiality while realizing deduplication. However, these systems achieved confidentiality of

outsourced data at the cost of decreased error resilience. Therefore, how to protect oth confidentiality and

reliability while achieving deduplication in a cloud storage system is still a challenge.

1.1 Our Contributions

In this paper, we show how to design secure deduplication systems with higher reliability in cloud computing. We

introduce the distributed cloud storage servers into deduplication systems to provide better fault tolerance. To

further protect data confidentiality, the secret sharing technique is utilized, which is also compatible with the

distributed storage systems. In more details, a file is first split and encoded into fragments by using the technique

of secret sharing, instead of encryption mechanisms. These shares will be distributed across multiple independent

storage servers. Furthermore, to support deduplication, a short cryptographic hash value of the content will also

be computed and sent to each storage server as the fingerprint of the fragment stored at each server. Only the data

owner who first uploads the data is required to compute and distribute such secret shares, while all following users

who own the same data copy do not need to compute and store these shares any more. To recover data copies,

users must access a minimum number of storage servers through authentication and obtain the secret shares to

reconstruct the data. In other words, the secret shares of data will only be accessible by the authorized users who

own the corresponding data copy.

Another distinguishing feature of our proposal is that data integrity, including tag consistency, can be achieved.

The traditional deduplication methods cannot be directly extended and applied in distributed and multi-server

systems. To explain further, if the same short value is stored at a different cloud storage server to support a

duplicate check by using a traditional deduplication method, it cannot resist the collusion attack launched by

multiple servers. In other words, any of the servers can obtain shares of the data stored at the other servers with

the same short value as proof of ownership. Furthermore, the tag consistency, which was first formalized by [5]

to prevent the duplicate/ciphertext replacement attack, is considered in our protocol. In more details, it prevents a

user from uploading a maliciously-generated ciphertext such that its tag is the same with another honestly-

generated ciphertext. To achieve this, a deterministic secret sharing method has been formalized and utilized. To

our knowledge, no existing work on secure deduplication can properly address the reliability and tag consistency

problem in distributed storage systems.

This paper makes the following contributions.

 Four new secure deduplication systems are proposed to provide efficient deduplication with high

reliability for file-level and block-level deduplication, respectively. The secret splitting technique,

instead of traditional encryption methods, is utilized to protect data confidentiality. Specifically, data are

split into fragments by using secure secret sharing schemes and stored at different servers. Our proposed

constructions support both file-level and block-level deduplications.

 Security analysis demonstrates that the proposed deduplication systems are secure in terms of the

definitions specified in the proposed security model. In more details, confidentiality, reliability and

integrity can be achieved in our proposed system. Two kinds of collusion attacks are considered in our

solutions. These are the collusion attack on the data and the collusion attack against servers. In particular,

the data remains secure even if the adversary controls a limited number of storage servers.

 We implement our deduplication systems using the Ramp secret sharing scheme that enables high

reliability and confidentiality levels. Our evaluation results demonstrate that the new proposed

constructions are efficient and the redundancies are optimized and comparable with the other storage

system supporting the same level of reliability.

 [Sandhya., 3(4): April, 2016] ISSN 2349-4506
 Impact Factor: 2.265

Global Journal of Engineering Science and Research Management

http: // www.gjesrm.com © Global Journal of Engineering Science and Research Management

 [80]

1.2 Organization

This paper is organized as follows. In Section 2, we present the system model and security requirements of

deduplication. Our constructions are presented in Section 3 and Section 4. The security analysis is given in Section

5. The implementation and evaluation are shown in Sections 6, and related work is described in Section 7. Finally,

we draw our conclusions in Section 8.

PROBLEM FORMULATION
2.1 System Model

This section is devoted to the definitions of the system model and security threats. Two kinds entities will be

involved in this deduplication system, including the user and the storage cloud service provider (S-CSP). Both

client-side deduplication and server-side deduplication are supported in our system to save the bandwidth for data

uploading and storage space for data storing.

 User. The user is an entity that wants to outsource data storage to the S-CSP and access the data later. In

a storage system supporting deduplication, the user only uploads unique data but does not upload any

duplicate data to save the upload bandwidth. Furthermore, the fault tolerance is required by users in the

system to provide higher reliability.

 S-CSP. The S-CSP is an entity that provides the outsourcing data storage service for the users. In the

deduplication system, when users own and store the same content, the S-CSP will only store a single

copy of these files and retain only unique data. A deduplication technique, on the other hand, can reduce

the storage cost at the server side and save the upload bandwidth at the user side. For fault tolerance and

confidentiality of data storage, we consider a quorum of S-CSPs, each being an independent entity. The

user data is distributed across multiple S-CSPs.

We deploy our deduplication mechanism in both file and block levels. Specifically, to upload a file, a user first

performs the file-level duplicate check. If the file is a duplicate, then all its blocks must be duplicates as well,

otherwise, the user further performs the block level duplicate check and identifies the unique blocks to be

uploaded. Each data copy (i.e., a file or a block) is associated with a tag for the duplicate check. All data copies

and tags will be stored in the S-CSP.

2.2 Threat Model and Security Goals

Two types of attackers are considered in our threat model: (i) An outside attacker, who may obtain some

knowledge of the data copy of interest via public channels. An outside attacker plays the role of a user that interacts

with the S-CSP; (ii) An inside attacker, who may have some knowledge of partial data information such as the

ciphertext. An insider attacker is assumed to be honest-but-curious and will follow our protocol, which could refer

to the S-CSPs in our system. Their goal is to extract useful information from user data. The following security

requirements, including confidentiality, integrity, and reliability are considered in our security model.

Confidentiality. Here, we allow collusion among the SCSPs. However, we require that the number of colluded S-

CSPs is not more than a predefined threshold. To this end, we aim to achieve data confidentiality against

collusion attacks. We require that the data distributed and stored among the S-CSPs remains secure when they are

unpredictable (i.e., have high min-entropy), even if the adversary controls a predefined number of S-CSPs. The

goal of the adversary is to retrieve and recover the files that do not belong to them. This requirement has recently

been formalized in [6] and called the privacy against chosen distribution attack. This also implies that the data is

secure against the adversary who does not own the data.

Integrity. Two kinds of integrity, including tag consistency and message authentication, are involved in the

security model. Tag consistency check is run by the cloud storage server during the file uploading phase, which

is used to prevent the duplicate/ciphertext replacement attack. If any adversary uploads a maliciously-generated

ciphertext such that its tag is the same with another honestly-generated ciphertext, the cloud storage server can

detect this dishonest behavior. Thus, the users do not need to worry about that their data are replaced and unable

to be decrypted. Message authentication check is run by the users, which is used to detect if the downloaded and

decrypted data are complete and uncorrupted or not. This security requirement is introduced to prevent the insider

attack from the cloud storage service providers.

Reliability. The security requirement of reliability in deduplication means that the storage system can provide

fault tolerance by using the means of redundancy. In more details, in our system, it can be tolerated even if a

 [Sandhya., 3(4): April, 2016] ISSN 2349-4506
 Impact Factor: 2.265

Global Journal of Engineering Science and Research Management

http: // www.gjesrm.com © Global Journal of Engineering Science and Research Management

 [81]

certain number of nodes fail. The system is required to detect and repair corrupted data and provide correct output

for the users.

THE DISTRIBUTED DEDUPLICATION SYSTEMS
The distributed deduplication systems’ proposed aim is to reliably store data in the cloud while achieving

confidentiality and integrity. Its main goal is to enable deduplication and distributed storage of the data across

multiple storage servers. Instead of encrypting the data to keep the confidentiality of the data, our new

constructions utilize the secret splitting technique to split data into shards. These shards will then be distributed

across multiple storage servers.

3.1 Building Blocks

Secret Sharing Scheme. There are two algorithms in a secret sharing scheme, which are Share and Recover. The

secret is divided and shared by using Share. With enough shares, the secret can be extracted and recovered with

the algorithm of Recover. In our implementation, we will use the Ramp secret sharing scheme (RSSS, to secretly

split a secret into shards. Specifically, the (n, k, r)-RSSS (where n > k > r ≥ 0) generates n shares from a secret so

that (i) the secret can be recovered from any k or more shares, and (ii) no information about the secret can be

deduced from any r or less shares. Two algorithms, Share and Recover, are defined in the (n, k, r)-RSSS.

 Share divides a secret S into (k −r) pieces of equal size, generates r random pieces of the same size, and

encodes the k pieces using a non-systematic k-of-n erasure code into n shares of the same size;

 Recover takes any k out of n shares as inputs and then outputs the original secret S. It is known that when

r = 0, the (n, k, 0)-RSSS becomes the (n, k) Rabin’s Information Dispersal Algorithm (IDA) [9]. When r

= k−1, the (n, k, k−1)-RSSS becomes the (n,k) Shamir’s Secret Sharing Scheme (SSSS) [10].

Tag Generation Algorithm. In our constructions below, two kinds of tag generation algorithms are defined, that

is, TagGen and TagGen’. TagGen is the tag generation algorithm that maps the original data copy F and outputs

a tag T(F). This tag will be generated by the user and applied to perform the duplicate check with the server.

Another tag generation algorithm TagGen’ takes as input a file F and an index j and outputs a tag. This tag,

generated by users, is used for the proof of ownership for F.

Message authentication code. A message authentication code (MAC) is a short piece of information used to

authenticate a message and to provide integrity and authenticity assurances on the message. In our construction,

the message authentication code is applied to achieve the integrity of the outsourced stored files. It can be easily

constructed with a keyed (cryptographic) hash function, which takes input as a secret key and an arbitrary-length

file that needs to be authenticated, and outputs a MAC. Only users with the same key generating the MAC can

verify the correctness of the MAC value and detect whether the file has been changed or not.

3.2 The File-level Distributed Deduplication System

To support efficient duplicate check, tags for each file will be computed and are sent to S-CSPs. To prevent a

collusion attack launched by the S-CSPs, the tags stored at different storage servers are computationally

independent and different. We now elaborate on the details of the construction as follows.

System setup. In our construction, the number of storage servers S-CSPs is assumed to be n with identities denoted

by id1, id2, · · · , idn, respectively. Define the security parameter as 1_ and initialize a secret sharing scheme SS

= (Share, Recover), and a tag generation algorithm TagGen. The file storage system for the storage server is set

to be ⊥.

File Upload. To upload a file F, the user interacts with S-CSPs to perform the deduplication. More precisely, the

user firstly computes and sends the file tag ϕF = TagGen(F) to S-CSPs for the file duplicate check.

If a duplicate is found, the user computes and sends ϕF;idj = TagGen′(F, idj) to the j-th server with identity idj

via the secure channel for 1 ≤ j ≤ n (which could be implemented by a cryptographic hash function Hj(F) related

with index j). The reason for introducing an index j is to prevent the server from getting the shares of other S-

CSPs for the same file or block, which will be explained in detail in the security analysis. If ϕF;idj matches the

metadata stored with ϕF , the user will be provided a pointer for the shard stored at server idj .

 Otherwise, if no duplicate is found, the user will proceed as follows. He runs the secret sharing algorithm

 [Sandhya., 3(4): April, 2016] ISSN 2349-4506
 Impact Factor: 2.265

Global Journal of Engineering Science and Research Management

http: // www.gjesrm.com © Global Journal of Engineering Science and Research Management

 [82]

SS over F to get {cj} = Share(F), where cj is the j-th shard of F. He also computes ϕF;idj = TagGen′(F,

idj), which serves as the tag for the jth S-CSP. Finally, the user uploads the set of values {ϕF , cj , ϕF;idj

} to the S-CSP with identity idj via a secure channel. The S-CSP stores these values and returns a pointer

back to the user for local storage.

File Download. To download a file F, the user first downloads the secret shares {cj} of the file from k out of n

storage servers. Specifically, the user sends the pointer of F to k out of n S-CSPs. After gathering enough shares,

the user reconstructs file F by using the algorithm of Recover({cj}). This approach provides fault tolerance and

allows the user to remain accessible even if any limited subsets of storage servers fail.

3.3 The Block-level Distributed Deduplication System

In this section, we show how to achieve the fine-grained block-level distributed deduplication. In a block-level

deduplication system, the user also needs to firstly perform the file-level deduplication before uploading his file.

If no duplicate is found, the user divides this file into blocks and performs block-level deduplication. The system

setup is the same as the file-level deduplication system, except the block size parameter will be defined

additionally. Next, we give the details of the algorithms of File Upload and File Download.

File Upload. To upload a file F, the user first performs the file-level deduplication by sending ϕF to the storage

servers. If a duplicate is found, the user will perform the file-level deduplication, such as that in Section 3.2.

Otherwise, if no duplicate is found, the user performs the block-level deduplication as follows. He firstly divides

F into a set of fragments {Bi} (where i = 1, 2, · · ·). For each fragment Bi, the user will perform a block-level

duplicate check by computing ϕBi = TagGen(Bi), where the data processing and duplicate check of block-level

deduplication is the same as that of file-level deduplication if the file F is replaced with block Bi. Upon receiving

block tags {ϕBi }, the server with identity idj computes a block signal vector σBi for each i.

 If σBi=1, the user further computes and sends ϕBi;j = TagGen′(Bi, j) to the S-CSP with identity idj . If it

also matches the corresponding tag stored, S-CSP returns a block pointer of Bi to the user. Then, the user

keeps the block pointer of Bi and does not need to upload Bi.

 ii) If σBi=0, the user runs the secret sharing algorithm SS over Bi and gets {cij} = Share(Bi), where cij

is the j-th secret share of Bi. The user also computes ϕBi;j for 1 ≤ j ≤ n and uploads the set of values {ϕF

, ϕF;idj , cij , ϕBi;j} to the server idj via a secure channel. The S-CSP returns the corresponding pointers

back to the user.

File Download. To download a file F = {Bi}, the user first downloads the secret shares {cij} of all the blocks Bi in

F from k out of n S-CSPs. Specifically, the user sends all the pointers for Bi to k out of n servers. After gathering

all the shares, the user reconstructs all the fragments Bi using the algorithm of Recover({·}) and gets the file F =

{Bi}.

FUTURE ENHANCEMENT
4.1 Distributed Deduplication System with Tag Consistency

In this section, we consider how to prevent a duplicate faking or maliciously-generated ciphertext replacement

attack. A security notion of tag consistency has been formalized for this kind of attack [6]. In a deduplication

storage system with tag consistency, it requires that no adversary is able to obtain the same tag from a pair of

different messages with a non-negligible probability. This provides security guarantees against the duplicate

faking attacks in which a message can be undetectably replaced by a fake one. In the previous related work on

reliable deduplication over encrypted data, the tag consistency cannot be achieved as the tag is computed by the

data owner from underlying data files, which cannot be verified by the storage server. As a result, if the data owner

replaces and uploads another file that is different from the file corresponding to the tag, the following users who

perform the duplicate check cannot detect this duplicate faking attack and extract the exact files they want. To

solve this security weakness, [6] suggested to compute the tag directly from the ciphertext by using a hash

function. This solution obviously prevents the ciphertext replacement attack because the cloud storage server is

able to compute the tag by itself. However, such a method is unsuitable for the distributed storage system to realize

the tag consistency. The challenge is that traditional secret sharing schemes are not deterministic. As a result, the

duplicate check for each share stored in different storage servers will not be the same for all users. In [11], though

they mentioned the method of deterministic secret sharing scheme in the implementation, the tag was still

computed from the whole file or ciphertext, which means the schemes in [11] cannot achieve the security against

duplicate faking and replacement attacks.

 [Sandhya., 3(4): April, 2016] ISSN 2349-4506
 Impact Factor: 2.265

Global Journal of Engineering Science and Research Management

http: // www.gjesrm.com © Global Journal of Engineering Science and Research Management

 [83]

4.1.1 Deterministic Secret Sharing Schemes

We formalize and present two new techniques for the construction of the deterministic secret sharing schemes.

For simplicity, we present an example based on traditional Shamir’s Secret Sharing scheme. The description of

(k, n)-threshold in Shamir’s secret sharing scheme is as follows. In the algorithm of Share, given a secret α ∈ Zp

to be shared among n users for a prime p, choose at random a (k − 1)-degree polynomial function f(x) = a0 + a1x

+ a2x2 + · · · + ak−1xk−1 ∈ Zp[X] such that α = f(0). The value of f(i) mod p for 1 ≤ i ≤ n is computed as the i-th

share. In the algorithm of Recover, Lagrange interpolation is used to compute α from any valid k shares. The

deterministic version of Shamir’s secret sharing scheme is similar to the original one, except all the random

coefficients {ai} are replaced with deterministic values. We describe two methods to realize the constructions of

deterministic secret sharing schemes below.

The First Method

Share. To share a secret α ∈ Zp, it chooses at random a (k − 1)-degree polynomial function f(x) = a0 + a1x + a2x2

+ · · · + ak−1xk−1 ∈ Zp[X] such that α = f(0), ai = H(α∥i) and p is a prime, where H(·) is a hash function. The

value of f(i) mod p for 1 ≤ i ≤ n is computed as the i-th share and distributed to the corresponding owner. Recover.

The description of algorithm Recover is the same with the traditional Shamir’s secret sharing scheme by using

Lagrange interpolation. The secret α can be recovered from any valid k shares. For files or blocks unknown to the

adversary, these coefficients are also confidential if they are unpredictable. To show its security, these values can

be also viewed as random coefficients in the random oracle model. Obviously, these methods can be also applied

to the RSSS to realize deterministic sharing.

The Second Method

Obviously, the first method of deterministic secret sharing cannot prevent brute-force attack if the file is

predictable. Thus, we show how to construct another deterministic secret sharing construction method to prevent

the brute-force attack. Another entity, called key server, is introduced in this method, who is assumed to be honest

and will not collude with the cloud storage server and other outside attackers. System Setup. Apart from the

parameters for the first deterministic secret sharing scheme, the key server chooses a key pair (pk, sk) which can

be initialized as RSA cryptosystem. Share. To share a secret α, the user first computes H(α∥i) for 1 ≤ i ≤ k − 1.

Then, he interacts with the key server in an oblivious way such that the key server generates a blind signature on

each H(α∥i) with the secret key sk without knowing H(α∥i). For simplicity, we denote the signature as σi =

φ(H(α∥i), sk), where φ is a signing algorithm. Finally, the owner of the secret chooses at random a (k−1)-degree

polynomial function f(x) = a0 + a1x + a2x2 + · · · + ak−1xk−1 ∈ Zp[X] such that α = f(0) and ai = σi. The value

of f(i) mod p for 1 ≤ i ≤ n is computed as the i-th share and distributed to the corresponding owner. Recover. It is

the same with the traditional Shamir’s secret sharing scheme. In the second construction, the secret key sk is

applied to compute the value of σi. Thus, for the cloud storage server and other outside attackers, they cannot get

any useful information from the short value even if the secret is predictable [5]. Actually, the signature can be

viewed as a pseudorandom function for α.

4.1.2 The Construction of Distributed Deduplication

System with Tag Consistency We give a generic construction that achieves tag consistency below.

System setup. This algorithm is similar to the above construction except a deterministic secret sharing scheme SS

= (Share, Recover) is given.

File Upload. To upload a file F, the user first performs the file-level deduplication. Different from the above

constructions, the user needs to compute the secret shares {Fj}1≤j≤n of the file by using the Share algorithm.

Then, ϕFj = TagGen(Fj) is computed and sent to the j-th S-CSP for each j. It is the same as above if there is a

duplicate. Otherwise, the user performs the block-level deduplication as follows. Note that each server idj also

needs to keep ϕFj with the following information of the blocks. The file F is firstly divided into a set of fragments

{Bi} (where i = 1, 2, · · ·). For each block, the duplicate check operation is the same as the file-level check except

file F is replaced with block Bi. Assume that the secret shares are {Bij} for 1 ≤ j ≤ n and corresponding tags are

ϕBij for block Bi, where 1 ≤ j ≤ n. The tag ϕBij is sent to the the server with identity idj . A block pointer of Bi

from this server is returned to the user if there is a match. Otherwise, the user uploads the Bij to the server idj via

a secure channel and a pointer for this block will also be returned back to the user. The procedure of the file

download is the same as the previous block-level deduplication scheme in Section 3.3. In this construction, the

security relies on the assumption that there is a secure deterministic secret sharing scheme.

 [Sandhya., 3(4): April, 2016] ISSN 2349-4506
 Impact Factor: 2.265

Global Journal of Engineering Science and Research Management

http: // www.gjesrm.com © Global Journal of Engineering Science and Research Management

 [84]

4.2 Enhanced Deduplication System with Proof of Ownership

Recently, Halevi [12] pointed out the weakness of the security in traditional deduplication systems with only a

short hashing value. Halevi showed a number of attacks that can lead to data leakage in a storage system supporting

client-side deduplication. To overcome this security issue, they also presented the concept of Proof of Ownership

(PoW) to prevent these attacks. PoW [12] enables users to prove their ownership of data copies to the storage

server. Specifically, PoW is implemented as an interactive algorithm (denoted by PoW) run by a prover (i.e., user)

and a verifier (i.e., storage server). The verifier derives a short tag value ϕ(F) from a data copy F. To prove the

ownership of the data copy F, the prover needs toi) compute and send ϕ′ to the verifier, and ii) present proof to

the storage server that he owns F in an interactive way with respect to ϕ′. The PoW is successful if ϕ′ = ϕ(F) and

the proof is correct. The formal security definition for PoW roughly follows the threat model in a content

distribution network, where an attacker does not know the entire file, but has accomplices who have the file. The

accomplices follow the “bounded retrieval model” so they can help the attacker obtain the file, subject to the

constraint they must send fewer bits than the initial min-entropy of the file to the attacker [12]. Thus, we also

introduce Proof of Ownership techniques in our construction to prevent the deduplication systems from these

attacks. Furthermore, we also consider how to achieve the integrity of the data stored in each S-CSP by using the

message authentication code. We now show how to integrate PoW and the message authentication code in our

deduplication systems. The system setup is similar to the scheme in Section 3.3 except two PoW notions are

additionally involved. We denote them by POWF and POWB, where POWF is PoW for file-level deduplication

and POWB is PoW for block-level deduplication, respectively.

File Upload. To upload a file F, the user performs a file-level deduplication with the S-CSPs, as in Section 3.3. If

a file duplicate is found, the user will run the PoW protocol POWF with each S-CSP to prove the file ownership.

More precisely, for the j-th server with identity idj , the user first computes ϕF;idj = TagGen′(F, idj) and runs the

PoW proof algorithm with respect to ϕF;idj . If the proof is passed, the user will be provided a pointer for the

piece of file stored at j-th S-CSP. Otherwise, if no duplicate is found, the user will proceed as follows. He first

divides F into a set of fragments {Bi} (where i = 1, 2, · · ·). For each fragment Bi, the user will perform a block-

level duplicate check, such as the scheme in Section 3.3.

 If there is a duplicate in S-CSP, the user runs PoWB on input ϕBi;j = TagGen′(Bi, idj) with the server to

prove that he owns the block Bi. If it is passed, the server simply returns a block pointer of Bi to the user.

The user then keeps the block pointer of Bi and does not need to upload Bi.

 Otherwise, the user runs the secret sharing algorithm SS over Bi and gets {cij} = Share(Bi), where cij is

the j-th secret share of Bi. The values of (cij , ϕBi;j) will be uploaded and stored by the j-th S-CSP.

Finally, the user also computes the messageauthentication code of F as macF = H(kF , F), where the keys

are computed as kF = H0(F) with a cryptographic hash function H0(·). Then, the user runs the secret

sharing algorithm SS over macF as {mfj} = Share(macF), where mfj is the j-th secret share of macF .

The user uploads the set of values{ϕF , ϕF;idj ,mfj} to the S-CSP with identity idj via a secure channel.

The server stores these values and returns the corresponding pointers back to the user for local storage.

File Download. To download a file F, the user first downloads the secret shares {cij ,mfj} of the file from k out of

n storage servers. Specifically, the user sends all the pointers for F to k out of n servers. After gathering all the

shares, the user reconstructs file F, macF by using the algorithm of Recover({·}). Then, he verifies the correctness

of these tags to check the integrity of the file stored in S-CSPs.

SECURITY ANALYSIS
In this section, we will only give the security analysis for the distributed deduplication system in Section 4. The

security analysis for the other constructions is similar and thus omitted here. Some basic cryptographic tools have

been applied into our construction to achieve secure deduplication. To show the security of this protocol, we

assume that the underlying building blocks are secure, including the secret sharing scheme and the PoW scheme.

Thus, the security will be analyzed based on the above security assumptions. In our constructions, S-CSPs are

assumed to follow the protocols. If the data file has been successfully uploaded and stored at servers, then the user

who owns the file can convince the servers based on the correctness of the PoW. Furthermore, the data is

distributedly stored at servers with the secret sharing method. Based on the completeness of the underlying secret

sharing scheme, the file will be recovered by the user with enough correct shares. The integrity can be also

obtained because the utilization of secure message authentication code. Next, we consider the confidentiality

against two types of adversaries. The first type of adversary is defined as dishonest users who aims to retrieve

files stored at SCSPs they do not own. The second type of adversary is defined as a group of S-CSPs and users.

 [Sandhya., 3(4): April, 2016] ISSN 2349-4506
 Impact Factor: 2.265

Global Journal of Engineering Science and Research Management

http: // www.gjesrm.com © Global Journal of Engineering Science and Research Management

 [85]

Their goal is to get the useful information of file content they do not own individually by launching the collusion

attack. The attacks launched by these two types of adversaries are denoted by Type-I attack and Type-II attack,

respectively. Because the RSSS is used in our construction, the different level of confidentiality is achieved in

terms of the parameter r given in the RSSS scheme, hich increases with the number of r. Thus, in the following

security analysis, we will not explain this furthermore.

Confidentiality against a Type-I Attack

This type of adversary tries to convince the S-CSPs with some auxiliary information to get the content of the file

stored at S-CSPs. To get one piece of share stored in a S-CSP, the user needs to perform a correct PoW protocol

for the corresponding share stored at the S-CSP. In this way, if the adversary wants to get the k-th piece of a share

he does not own, he has to convince the k-th SCSP by correctly running a PoW protocol. However, the user cannot

get the auxiliary value used to perform PoW, if he does not own the file. Thus, based on the security of PoW, the

security against a Type-I attack is easily derived.

Confidentiality against a Type-II Attack

As shown in the construction, the data is processed before being outsourced to cloud servers. A secure secret

sharing scheme has been applied to split each file into pieces, where each piece is distributedly stored in a SCSP.

Because the underlying RSSS secret sharing scheme is semantically secure, the data can not be recovered from

pieces of shares that are less than a predefined threshold number. This means the confidentiality of the data stored

at the S-CSPs is guaranteed even if some S-CSPs collude. Note that in the RSSS secret sharing scheme, no

information will be leaked even if any r of n shares collude. Thus, the data in our scheme remains secure even if

any r S-CSPs collude. We also need to consider the security against a colluding attack for PoW protocol because

the adversary may also get the data if he successfully convinces the S-CSPs with correct proof in PoW. There are

two kinds of PoW utilized in our constructions. These are blocklevel and file-level proof of ownership. Recently,

the formal security definition of PoW was formally given in [12]. However, there was one tradeoff security

definition. This definition relaxes the restriction that the proof fails unless the accomplices of the adversary send

more than a threshold or more bits to the adversary, regardless of the file entropy. Next, we will present a security

analysis of the proposed PoW in distributed deduplication systems. Assume there are t S-CSPs that would collude

and try to extract a user’s sensitive file F, where t < k. We will only present the analysis for file because the

security analysis for block is the same. From this assumption, we can model it by providing an adversary with a

set of tags {ϕF;idi1 , · · · , ϕF;idit }, where idi1, · · · , idit are the identities of the servers. Furthermore, the

interactive values in the proof algorithm between the users and servers with respect to these tags are available to

the adversary. Then, the proof of PoW cannot be passed to convince a server with respect to another different tag

ϕF;id_ , where id∗ ̸∈ {idi1, · · · , idik}. Such a PoW scheme with a secure proof algorithm can be easily constructed

based on previously known PoW methods. For example, the tag generation TagGen(F, idi) algorithm could be

computed from the independent Merkle-hash tree with the different cryptographic hash function Hi(·) [12]. Using

the proof algorithm in the PoW scheme with respect to ϕF;idi , we can then easily obtain a secure proof of

ownership scheme with the above security requirement. Finally, based on such a secure PoW scheme and secure

secret sharing scheme, we can get the following security result for our distributed deduplication system from the

above analysis.

Theorem 1: The proposed distributed deduplication system achieves privacy against the chosen distribution attack

under the assumptions that the secret sharing scheme and PoW scheme are secure. The security analysis of

reliability is simple because of the utilization of RSSS, which is determined by parameters of n and k. Based on

the RSSS, the data can be recovered from any k shares. More specifically, this reliability level depends on n − k.

EXPERIMENT
We describe the implementation details of the proposed distributed deduplication systems in this section. The

main tool for our new deduplication systems is the Ramp secret sharing scheme (RSSS) [7], [8]. The shares of a

file are shared across multiple cloud storage servers in a secure way. The efficiency of the proposed distributed

systems are mainly determined by the following three parameters of n, k, and r in RSSS. In this experiment, we

choose 4KB as the default data block size, which has been widely adopted for block-level deduplication systems.

We choose the hash function SHA-256 with an output size of 32 bytes. We implement the RSSS based on the

Jerasure Version 1.2 [13]. We choose the erasure code in the (n, k, r)-RSSS whose generator matrix is a Cauchy

matrix [14] for the data encoding and decoding. The storage blowup is determined by the parameters n, k, r. In

more details, this value is n k−r in theory. All our experiments were performed on an Intelr Xeonr E5530

 [Sandhya., 3(4): April, 2016] ISSN 2349-4506
 Impact Factor: 2.265

Global Journal of Engineering Science and Research Management

http: // www.gjesrm.com © Global Journal of Engineering Science and Research Management

 [86]

(2.40GHz) server with Linux 3.2.0-23- generic OS. In the deduplication systems, the (n, k, r)- RSSS has been

used. For practice consideration, we test four cases:

• case 1: r = 1, k = 2, and 3 ≤ n ≤ 8 (Figure 3(a));

• case 2: r = 1, k = 3 and 4 ≤ n ≤ 8 (Figure 3(b));

• case 3: r = 2, k = 3, and 4 ≤ n ≤ 8 (Figure 3(c));

• case 4: r = 2, k = 4, and 5 ≤ n ≤ 8 (Figure 3(d)).

As shown in Figure 1, the encoding and decoding times of our deduplication systems for each block (per 4KB

data block) are always in the order of microseconds, and hence are negligible compared to the data transfer

performance in the Internet setting. We can also observe that the encoding time is higher than the decoding time.

The reason for this result is that the encoding operation always involves all n shares, while the decoding operation

only involves a subset of k < n shares. The performance of several basic modules in our constructions is tested in

our experiment. First, The average time for generating a hash function with 32-byte output from a 4KB data block

is 25.196 usec. The average time is 30 ms for generating a hash function with the same output length from a 4MB

file, which only needs to be computed by the user for each file. Next, we focus on the evaluation with respect to

some critical factors in the (n, k, r)-RSSS. First, we evaluate the efficiency between the computation and the

number of SCSPs. The results are given in Figure 2, which shows the encoding/decoding times versus the number

of S-CSPs n. In this experiment, r is set to be 2 and the reliability level n−k = 2 are also fixed. From Figure 2, the

encoding time increases with the number of n since more shares are involved in the encoding algorithm. We also

test the relation between the computational time and the parameter r. More specifically, in Figure 3, it shows the

encoding/decoding times versus the confidentiality level r. To realize this test, the number of S-CSPs n = 6 and

the reliability level n − k = 2 are fixed. From the figure, it can be easily found that the encoding/decoding time

increases with r. Actually, this observation could also be derived from the theoretical result. If we recall that a

secret is divided into k−r equalsize pieces in the Share function of the RSSS. As a result, the size of each piece

will increase with the size of r, which increases the encoding/decoding computational overhead. From this

experiment, we can also conclude it will require much higher computational overhead in order to achieve higher

confidentiality. In Figure 4, the relation of the factor of n − k and the computational time is given, where the

number of S-CSPs and the confidentiality level are fixed as n = 6 and r = 2. From the figure, we can see that with

the increase of n−k, the encoding/decoding time decreases. The reason for this result is based on the RSSS, where

fewer pieces (i.e., k) will be required with the increase of n − k.

RELATED WORK
Reliable Deduplication systems Data deduplication techniques are very interesting techniques that are widely

employed for data backup in enterprise environments to minimize network and storage overhead by detecting and

eliminating redundancy among data blocks. There are many deduplication schemes proposed by the research

community. The reliability in deduplication has also been addressed by [15], [11], [16]. However, they only

focused on traditional files without encryption, without considering the reliable deduplication over ciphertext. Li

et al. [11] showed how to achieve reliable key management in deduplication. However, they did not mention about

the application of reliable deduplication for encrypted files. Later, in [16], they showed how to extend the method

in [11] for the construction of reliable deduplication for user files. However, all of these works have not considered

and achieved the tag consistency and integrity in the construction.

Fig. 1. The Encoding and Decoding time for different RSSS parameters.

 [Sandhya., 3(4): April, 2016] ISSN 2349-4506
 Impact Factor: 2.265

Global Journal of Engineering Science and Research Management

http: // www.gjesrm.com © Global Journal of Engineering Science and Research Management

 [87]

Convergent encryption. Convergent encryption [4] ensures data privacy in deduplication. Bellare et al. [6]

formalized this primitive as message-locked encryption, and explored its application in spaceefficient secure

outsourced storage. There are also several implementations of convergent implementations of different convergent

encryption variants for secure deduplication (e.g., [17], [18], [19], [20]). It is known that some commercial cloud

storage providers, such as Bitcasa, also deploy convergent encryption [6]. Liet al. [11] addressed the key-

management issue in block-level deduplication by distributing these key across multiple servers after encrypting

the files. Bellare et al. [5] showed how to protect data confidentiality by transforming the predicatable message

into a

Unpredicatable message. In their system, another third party called the key server was introduced to generate the

file tag for the duplicate check. Stanek et al. [21] presented a novel encryption scheme that provided differential

security for popular and unpopular data. For popular data that are not particularly sensitive, the traditional

conventional encryption is performed. Another two-layered encryption scheme with stronger security while

supporting deduplication was proposed for unpopular data. In this way, they achieved better tradeoff between the

efficiency and security of the outsourced data.

Proof of ownership. Harnik et al. [22] presented a number of attacks that can lead to data leakage in a cloud storage

System supporting client-side deduplication. To prevent these attacks, Halevi et al. [12] proposed the notion of

“proofs of ownership” (PoW) for deduplication systems, so that a client can efficiently prove to the cloud storage

server that he/she owns a file without uploading the file itself. Several PoW constructions based on the Merkle

Hash Tree are proposed [12] to enable client-side deduplication, which includes the bounded leakage setting.

Pietro and Sorniotti [23] proposed another efficient PoW scheme by choosing the projection of a file onto some

randomly selected bit-positions as the file proof. Note that all of the above schemes do not consider data privacy.

Recently, Xu et al. [24] presented a PoW scheme that allows client-side deduplication in a bounded leakage setting

with security in the random oracle model. Ng et al. [25] extended PoW for encrypted file, but they did not address

how to minimize the key management overhead. PoR/PDP. Ateniese et al. [26] introduced the concept of proof

of data possession (PDP). This notion was introduced to allow a cloud client to verify the integrity of its data

outsourced to the cloud in a very efficient way. Juels et al. [27] proposed the concept of proof of retrievability

(PoR). Compared with PDP, PoR allows the cloud client to recover his outsourced data through the interactive

proof with the server. This scheme was later improved by Shacham and Waters [28]. The main difference between

the two notions is that PoR uses Error Correction/Erasure Codes to tolerate the damage to portions of the

outsourced data.

CONCLUSIONS
We proposed the distributed deduplication systems to improve the reliability of data while achieving the

confidentiality of the users’ outsourced data without an encryption mechanism. Four constructions were proposed

to support file-level and fine-grained block-level data deduplication. The security of tag consistency and integrity

were achieved. We implemented our deduplication systems using the Ramp secret sharing scheme and

demonstrated that it incurs small encoding/decoding overhead compared to the network transmission overhead in

regular upload/download operations.

REFERENCES
1. Amazon, “Case Studies,” https://aws.amazon.com/solutions/casestudies/# backup.

 [Sandhya., 3(4): April, 2016] ISSN 2349-4506
 Impact Factor: 2.265

Global Journal of Engineering Science and Research Management

http: // www.gjesrm.com © Global Journal of Engineering Science and Research Management

 [88]

2. J. Gantz and D. Reinsel, “The digital universe in 2020: Big data, bigger digi tal shadows, and biggest

growth in the far east,” http://www.emc.com/collateral/analyst-reports/idcthe- digital-universe-in-

2020.pdf, Dec 2012.

3. M. O. Rabin, “Fingerprinting by random polynomials,” Center for Research in Computing Technology,

Harvard University, Tech. Rep. Tech. Report TR-CSE-03-01, 1981.

4. J. R. Douceur, A. Adya, W. J. Bolosky, D. Simon, and M. Theimer, “Reclaiming space from duplicate

files in a serverless distributed file system.” in ICDCS, 2002, pp. 617–624.

5. M. Bellare, S. Keelveedhi, and T. Ristenpart, “Dupless: Serveraided encryption for deduplicated

storage,” in USENIX Security Symposium, 2013.

6. , “Message-locked encryption and secure deduplication,” in EUROCRYPT, 2013, pp. 296–312.

7. G. R. Blakley and C. Meadows, “Security of ramp schemes,” in Advances in Cryptology: Proceedings

of CRYPTO ’84, ser. Lecture Notes in Computer Science, G. R. Blakley and D. Chaum, Eds. Springer-

Verlag Berlin/Heidelberg, 1985, vol. 196, pp. 242–268.

8. A. D. Santis and B. Masucci, “Multiple ramp schemes,” IEEE Transactions on Information Theory, vol.

45, no. 5, pp. 1720–1728, Jul. 1999.

9. M. O. Rabin, “Efficient dispersal of information for security, load balancing, and fault tolerance,” Journal

of the ACM, vol. 36, no. 2, pp. 335–348, Apr. 1989.

10. A. Shamir, “How to share a secret,” Commun. ACM, vol. 22, no. 11, pp. 612–613, 1979.

11. J. Li, X. Chen, M. Li, J. Li, P. Lee, and W. Lou, “Secure deduplication with efficient and reliable

convergent key management,” in IEEE Transactions on Parallel and Distributed Systems, 2014, pp. vol.

25(6), pp. 1615–1625.

12. S. Halevi, D. Harnik, B. Pinkas, and A. Shulman-Peleg, “Proofs of ownership in remote storage systems.”

in ACM Conference on Computer and Communications Security, Y. Chen, G. Danezis, and V.

Shmatikov, Eds. ACM, 2011, pp. 491–500.

13. J. S. Plank, S. Simmerman, and C. D. Schuman, “Jerasure: A library in C/C++ facilitating erasure coding

for storage applications - Version 1.2,” University of Tennessee, Tech. Rep. CS-08-627, August 2008.

14. J. S. Plank and L. Xu, “Optimizing Cauchy Reed-solomon Codes for fault-tolerant network storage

applications,” in NCA-06: 5th IEEE International Symposium on Network Computing Applications,

Cambridge, MA, July 2006.

15. C. Liu, Y. Gu, L. Sun, B. Yan, and D. Wang, “R-admad: High reliability provision for large-scale de-

duplication archival storage systems,” in Proceedings of the 23rd international conference on

Supercomputing, pp. 370–379.

16. M. Li, C. Qin, P. P. C. Lee, and J. Li, “Convergent dispersal: Toward storage-efficient security in a cloud-

of-clouds,” in The 6th USENIX Workshop on Hot Topics in Storage and File Systems, 2014

17. P. Anderson and L. Zhang, “Fast and secure laptop backups with encrypted de-duplication,” in Proc. of

USENIX LISA, 2010.

18. Z. Wilcox-O’Hearn and B. Warner, “Tahoe: the least-authority filesystem,” in Proc. of ACM StorageSS,

2008.

19. A. Rahumed, H. C. H. Chen, Y. Tang, P. P. C. Lee, and J. C. S. Lui, “A secure cloud backup system with

assured deletion and version control,” in 3rd International Workshop on Security in Cloud Computing,

2011.

20. M. W. Storer, K. Greenan, D. D. E. Long, and E. L. Miller, “Secure data deduplication,” in Proc. of

StorageSS, 2008.

21. J. Stanek, A. Sorniotti, E. Androulaki, and L. Kencl, “A secure data deduplication scheme for cloud

storage,” in Technical Report, 2013.

22. D. Harnik, B. Pinkas, and A. Shulman-Peleg, “Side channels in cloud services: Deduplication in cloud

storage.” IEEE Security & Privacy, vol. 8, no. 6, pp. 40–47, 2010.

23. R. D. Pietro and A. Sorniotti, “Boosting efficiency and security in proof of ownership for deduplication.”

in ACM Symposium on Information, Computer and Communications Security, H. Y. Youm and Y. Won,

Eds. ACM, 2012, pp. 81–82.

24. J. Xu, E.-C. Chang, and J. Zhou, “Weak leakage-resilient client-side deduplication of encrypted data in

cloud storage,” in ASIACCS, 2013, pp. 195–206.

25. W. K. Ng, Y. Wen, and H. Zhu, “Private data deduplication protocols in cloud storage.” in Proceedings

of the 27th Annual ACM Symposium on Applied Computing, S. Ossowski and P. Lecca, Eds. ACM,

2012, pp. 441–446.

 [Sandhya., 3(4): April, 2016] ISSN 2349-4506
 Impact Factor: 2.265

Global Journal of Engineering Science and Research Management

http: // www.gjesrm.com © Global Journal of Engineering Science and Research Management

 [89]

26. G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner, Z. Peterson, and D. Song, “Provable data

possession at untrusted stores,” in Proceedings of the 14th ACM conference on Computer and

communications security, ser. CCS ’07. New York, NY, USA: ACM, 2007, pp. 598–609. [Online].

Available: http://doi.acm.org/10.1145/1315245.1315318

27. A. Juels and B. S. Kaliski, Jr., “Pors: proofs of retrievability for large files,” in Proceedings of the 14th

ACM conference on Computer and communications security, ser. CCS ’07. New York, NY, USA: ACM,

2007, pp. 584–597. [Online]. Available: http://doi.acm.org/10.1145/1315245.1315317 [28] H. Shacham

and B. Waters, “Compact proofs of retrievability,” in ASIACRYPT, 2008, pp. 90–107.

http://doi.acm.org/10.1145/1315245.1315318

